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ABSTRACT

The Integrated Multisatellite Retrievals for GPM (IMERG), a global high-resolution gridded pre-

cipitation dataset, will enable a wide range of applications, ranging from studies on precipitation charac-

teristics to applications in hydrology to evaluation of weather and climate models. These applications focus

on different spatial and temporal scales and thus average the precipitation estimates to coarser resolutions.

Such amodification of scale will impact the reliability of IMERG. In this study, the performance of the Final

Run of IMERG is evaluated against ground-based measurements as a function of increasing spatial reso-

lution (from 0.18 to 2.58) and accumulation periods (from 0.5 to 24 h) over a region in the southeastern

United States. For ground reference, a product derived from the Multi-Radar/Multi-Sensor suite, a radar-

and gauge-based operational precipitation dataset, is used. The TRMM Multisatellite Precipitation

Analysis (TMPA) is also included as a benchmark. In general, both IMERG and TMPA improve when

scaled up to larger areas and longer time periods, with better identification of rain occurrences and con-

sistent improvements in systematic and random errors of rain rates. Between the two satellite estimates,

IMERG is slightly better than TMPA most of the time. These results will inform users on the reliability of

IMERG over the scales relevant to their studies.

1. Introduction

Satellite retrievals of precipitation are instrumental in

understanding the distribution of precipitation around

the globe. In regions with sparse measurements, such as

mountainous areas and oceans, these remotely sensed

estimates help to bridge gaps and constrain the errors in

ground-based data. This is typically achieved through

the use of gridded high-resolution precipitation datasets,

such as the Integrated Multisatellite Retrievals for

GPM (IMERG; Huffman et al. 2015), the TRMM

Multisatellite Precipitation Analysis (TMPA; Huffman

et al. 2007), the Climate Prediction Center morphing

technique (CMORPH; Joyce et al. 2004; Joyce and Xie

2011), and Precipitation Estimation from Remotely

Sensed Information Using Artificial Neural Networks–

Cloud Classification System (PERSIANN-CCS; Hong

et al. 2004). These gridded precipitation datasets use a

blend of data from various sources with advanced
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techniques to provide a near-global coverage with high

spatial and temporal resolution.

However, to understand and benchmark the perfor-

mances of these datasets, they need to be evaluated

against groundmeasurements. To this end, a whole range

of ground validation efforts have been undertaken to

evaluate these datasets based on different criteria. Some

studies focus on different rain systems (e.g., Ebert et al.

2007; Habib et al. 2009; Roca et al. 2010; Mei et al. 2014),

some analyze the performance by terrain or surface (e.g.,

Tian and Peters-Lidard 2007; Kubota et al. 2009;

Stampoulis and Anagnostou 2012; Chen et al. 2013b; Liu

2016), some investigate the downstream impact of the

estimates on hydrologic modeling (e.g., Gottschalck et al.

2005; Xue et al. 2013; Falck et al. 2015; Tang et al. 2016b),

and others focus on a better understanding of the errors in

these datasets themselves (e.g., Maggioni et al. 2014;

Tang et al. 2015; Tan et al. 2016).

The aim of this study is to quantify the performance of

IMERG as a function of spatial and temporal scale.

Similar analyses have been performed for other prod-

ucts. For example, Tian et al. (2007) compared TMPA

and CMORPH at daily, seasonal, and annual time scales

against ground radar and gauges, finding that CMORPH

is better at daily resolution while TMPA is superior at

the longer time scales. On the other hand, Hossain and

Huffman (2008) examined the sensitivity of various

metrics to spatial and temporal scale in PERSIANN-CCS

against rain gauges and found that the probability

of detection of rain is most sensitive to scale, followed

by correlation length. Gourley et al. (2010) evaluated

TMPA and PERSIANN-CCS against a radar-based

product as a function of spatial scale, temporal scale,

and intensity, showing that TMPA is better than

PERSIANN-CCS, though both had reduced skill at

higher intensities. Habib et al. (2012) investigated the

performance of CMORPH against gauges and radar

across a range of spatial and temporal scales, with the

conclusion that random error decreases with increasing

scale. Sarachi et al. (2015) proposed a statistical model to

quantify the uncertainties in gridded satellite estimates by

deriving parameters to a generalized normal distribution

as a function of scale.

In this study, we build on these studies and evaluate

the IMERG Final Run on its ability to identify rain

occurrences and rain rates over a range of spatial and

temporal scales against a ground-based dataset derived

from the Multi-Radar/Multi-Sensor (MRMS) product

over a region in the United States. Our goal is to ex-

amine how various aspects of IMERG change as it is

averaged over larger areas and longer periods. For ex-

ample, it is expected that random errors would decrease

with more averaging; indeed, our study will show that

averaging the estimates in a 0.18 grid box from 0.5 to 24h

will reduce the normalized root-mean-square error

(RMSE) from 1.7 to 1.0. Hence, our results also provide

users with quantitative information on the performance

of IMERG at a scale suitable to their purposes.

2. Data

a. IMERG

IMERG is a gridded precipitation product that

merges measurements from a network of satellites in the

GPM constellation (Huffman et al. 2015). IMERG uses

the GPM Core Observatory satellite, which has a dual-

frequency precipitation radar and a 13-channel passive

microwave imager, as a reference standard to intercali-

brate and merge precipitation estimates from individual

passive microwave (PMW) satellites in the constellation

(Hou et al. 2014). Lagrangian time interpolation is then

applied to these estimates using displacement vectors

derived from infrared (IR) measurements on geosyn-

chronous satellites to produce gridded high-resolution

estimates of rainfall. This process, known as morphing,

was first introduced as the central component in

CMORPH (Joyce et al. 2004; Joyce and Xie 2011). This

gridded estimate is further supplemented via a Kalman

filter with microwave-calibrated rainfall estimates cal-

culated directly from IR measurements following the

PERSIANN-CCS algorithm (Hong et al. 2004). The fi-

nal satellite estimate is then calibrated, either directly

for the post-real-time product or indirectly for the near-

real-time products, using gauge data from the Global

Precipitation Climatology Centre monthly precipitation

dataset following the approach employed in TMPA

(Huffman et al. 2007).

IMERG has a high resolution of 0.18 every half-hour

covering up to6608 latitudes. Three choices of IMERG

runs are available depending on user requirements. The

Early Run, available at a 6-h delay for real-time appli-

cations such as hazard predictions, is limited to rainfall

morphing only forward in time. The Late Run, with an

18-h delay for purposes such as crop forecasting, em-

ploys morphing both forward and backward in time. The

Final Run is at a 4-month delay for research applica-

tions. Both the Early and Late Runs have climatological

gauge adjustment while the Final Run uses monthly

gauge adjustments to reduce bias. Moreover, runs with

longer delays will use more PMW estimates because of

latency in data delivery. Note that these delays will

eventually be reduced toward the targets of 4 h, 12 h, and

2 months, respectively. This study focuses on the cali-

brated estimate from Final Run of IMERG, which is

available from April 2014 onward.
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Currently, IMERG ingests data from version 3 of

GPM, which uses algorithms implemented at the

launch of the GPM Core Observatory in February 2014

and is thus subject to further improvements as mea-

surements are collected. The release of an updated

IMERG using version 4 of the GPM products is im-

minent and may involve potential improvements. We

do not expect this new version of IMERG to introduce

major changes to the results of our study; however,

should any significant difference arise, we will address

the changes in a follow-up paper (IMERG can be

downloaded from http://pmm.nasa.gov/data-access).

b. TMPA

TMPA (also known as TRMM 3B42) is the gridded

precipitation product from theTRMMproject. Just aswith

IMERG, TMPAuses the TRMM satellite to calibrate and

combine PMW estimates from different platforms. Esti-

mates derived from geosynchronous IR measurements

calibrated against PMW estimates on a monthly basis are

used to fill in the gaps in the PMW field.

TMPA is available at a resolution of 0.258 every 3h

covering up to 6508 latitudes. Two different products of

TMPA are available: the real-time product (with a 9-h

delay) and the research product (TMPA can be down-

loaded from http://pmm.nasa.gov/data-access). This

study uses the research product, which is available be-

ginning in 1998. The research product utilizes the TRMM

Precipitation Radar on board the satellite for calibration

and has the additional monthly gauge adjustment step.

Because of the decommissioning of the TRMM sat-

ellite, the TMPA research product switches, in October

2014, from calibration with the Precipitation Radar to a

climatological calibration modified from the real-time

product. While this change may introduce a disconti-

nuity from September to October 2014, the use of gauge

adjustment should minimize, if not eliminate, artifacts

for estimates over land (Bolvin and Huffman 2015).

c. Reference

The MRMS system (formerly National Mosaic and

Multi-Sensor QPE) is a gridded product by NOAA/

NSSL based primarily on the U.S. WSR-88D network

(Zhang et al. 2011b). Reflectivity data are mosaicked

onto a 3D grid over theUnited States with quality control

for beamblockages and bright band. From the reflectivity

structure and environmental field at each grid point, a

precipitation regime (e.g., snow, stratiform rain, convec-

tive rain) is determined using physically based heuristic

rules, and a corresponding reflectivity–precipitation re-

lationship is applied to estimate the surface precipitation

rate. These precipitation rates are bias corrected using

gauge data from the Hydrometeorological Automated

Data System1 and regional rain gauge networks. ARadar

Quality Index (RQI) is produced alongside each pre-

cipitation estimate in MRMS (Zhang et al. 2011a),

providing a numerical value that reflects sampling and

estimation uncertainty, such as beam issues relating to

orography and bright bands. Evaluation ofMRMS shows

better performances with the gauge correction and the

quantitative benefit of the RQI filter (Chen et al. 2013a;

Kirstetter et al. 2015a).

For the analysis herein, we use a reference dataset

processed from the MRMS suite in support of the GPM

mission for ground validation, available from June 2014

onward (Kirstetter et al. 2012, 2014, 2015b; Gebregiorgis

et al. 2017). This product aggregates the MRMS rain

rates to produce half-hourly accumulated rain rates over

the conterminous United States (208–558N, 1308–608W)

with a high spatial resolution of 0.018. For this reference
product, the RQI ranges from 0 (lowest quality) to 100

(highest quality). We mask pixels with RQI less than

100, thus keeping only perfect-RQI pixels in computing

the areal averages. A perfect RQI indicates an absence

of blockage and a radar beam below the bright band.We

also exclude all pixels in which frozen precipitation is

identified. Thus, this study focuses only on the most re-

liable estimates of liquid precipitation.

3. Approach

We restrict our analysis to 30.08–41.58N, 93.58–
83.58W, a region within which the reference is highly

reliable because of good radar coverage, high density of

gauges, and absence of significant orography. The RQI

in this region is generally high (Fig. 1). This flat topog-

raphy, together with a lack of frozen surfaces at most

FIG. 1. A map of the average RQI for 2015. The red box shows our

region of analysis: 30.08–41.58N, 93.58–83.58W.

1More information on the Hydrometeorological Automated

Data System is available at http://www.nws.noaa.gov/oh/hads/

WhatIsHADS.html.
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times of the year, also means that satellite retrievals are

generally more accurate, though the reliance on ice

scattering in retrievals over land will lead to challenges

in the estimation of warm rain. Within this region, we

randomly sample an ensemble of 100 square boxes of

length 0.18 and extract the IMERG and reference pre-

cipitation rates in each of these boxes over the period of

19 months (from June 2014 to December 2015).We then

do the same for square boxes of length 0.28 (i.e., 2 3 2

IMERG grid boxes), repeating it at 0.18 increments up

to and including 2.58. From these rates as a function of

spatial scale, we average them to get rates over periods

of 1, 3, 6, 12, and 24 h. This is also done separately for

TMPA and the reference, at increments of 0.258–2.508
and periods of 3, 6, 12, and 24h. Therefore, for each

spatial and temporal scale, we have 100 sets of pre-

cipitation rates between IMERG and the reference as

well as TMPA and the reference, from which we can

derive the statistics for each pair of rain rates and take

the average across the ensemble to reduce sampling

bias. Note that we are working with precipitation rate

and not accumulated precipitation; in other words, the

units of the precipitation are millimeters per hour over

1, 3, . . . , 24 h instead of millimeters.

The period of this analysis covers 19 months over 2014

and 2015 without a distinction between different sea-

sons. Additional analyses for the warm season (April–

September 2015) and the cold season (from October

2014 to March 2015) show that the difference is gener-

ally an offset in the performance of IMERG, with the

warm season slightly better than the cold season, as

consistent with previous studies (Guo et al. 2016; Liu

2016). However, as the behavior of the performance as a

function of scale is generally similar between the two

seasons, we will not distinguish between the two seasons

in the following sections. Instead, readers interested in

the results for each season can refer to the supplemental

material.

We evaluate IMERG and TMPA against the refer-

ence on two aspects: (i) rain occurrences, that is, if they

agree that it is raining above a certain threshold or not;

and (ii) rain rates, that is, when both are raining, the

degree to which the rates are similar. This follows the

approach advocated in Tang et al. (2015). As such, our

analyses may depend considerably on the chosen

threshold. This presents an immediate challenge as rain

rates are a function of scale, a situation well exempli-

fied in Fig. 2, which shows better agreement between

IMERG and the reference at longer and larger scales.

While we expect rain rates to decrease with increasing

scale because of coarsening, the fraction of raining

events actually increases, as demonstrated in Fig. 3

through a fixed threshold of 0.2mmh21. This will

have a bearing on the results because many aspects of

rainfall evaluation, such as the probability of detecting

rain, are a function of the number of raining events.

Instead of using a fixed threshold at all scales, we re-

duce the threshold with increasing scale. Since the pur-

pose of a threshold is to account for measurement

uncertainty, this uncertainty and thus the threshold

should decline as we consider more grid boxes. In the

limit of a very large scale, measurement uncertainty

should be infinitesimally small. This then leads to the next

question of how the threshold should decline with scale.

To resolve this, we draw our inspiration from the Central

Limit Theorem (Wilks 2011), whereby the standard de-

viation of a sample mean is the population standard de-

viation divided by
ffiffiffiffi
N

p
, whereN is the number of samples.

In our case, we set our threshold at box length l and time

period t as T(l, t)5T(0:18, 0.5 h)/
ffiffiffiffi
N

p
, where N is the

number of grid boxes and time steps that we averaged

over. This leads to

T(l, t)5
T(0:18, 0.5 h)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l

0:18
3

l

0:18
3

t

0.5 h

r . (1)

We set T(0:18, 0.5 h) 5 0.2mmh21, which is the mini-

mum nonzero value of IMERG rain rates prior to gauge

adjustment (G. Huffman 2014, personal communica-

tion). Figure 4 shows the thresholds as a function of scale

calculated in this way. In the supplemental material, we

provide an alternative set of figures, showing values

calculated using a constant threshold of 0.2mmh21.

With a scale-consistent set of thresholds, we consider

an estimate to be raining if the precipitation rate is at

least that of the threshold and not raining if it is below

the threshold. This approach allows us to construct a

contingency matrix (hits, misses, false alarms, and cor-

rect negatives) for each ensemble member of every

scale, from which we can calculate the probability of

detection, false alarm ratio, bias in detection, and

Heidke skill score (Wilks 2011). The probability of de-

tection is the fraction of actual rain occurrences that the

estimate detected; a perfect score is 1. The false alarm

ratio is the fraction of rain occurrences in the estimates

that are wrong; a perfect score is 0. The bias in detection

quantifies the tendency for the estimate to overestimate

(.1) or underestimate (,1) the number of rain occur-

rences; a perfect score is 1. Bias in detection, also known

as bias ratio (Wilks 2011), should not be confused with

‘‘bias,’’ which is a measure of rain rate. The Heidke skill

score is a generalized skill score than quantifies whether

the estimate is worse (,0) or better (.0) than random

chance; a perfect score is 1. Then, for the subset of the

hits, we calculate the correlation, normalized mean
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error, normalized mean absolute error, and RMSE, as

well as parameters used in the multiplicative error model

of Tian et al. (2013). These quantities are defined in the

appendix. In the following sections, we will present these

quantities as a function of scale, averaged over all en-

semblemembers.Note that, aswe are using square boxes,

an increase in spatial scale corresponds to a squared in-

crease in the actual area (e.g., double the box length from

0.18 to 0.28 increases the area by a factor of 4).

4. Evaluation of rain occurrences

We begin our evaluation by examining the ability of

the satellite estimates to identify the rain occurrences.

Figure 5 gives the average percentages of hits,misses, false

alarms, and correct negatives between IMERG/TMPA

and the reference. The percentage of hits increases

monotonically with increasing scale for IMERG and

TMPA, which is expected since there are more rain oc-

currences even with a constant threshold (Fig. 3), much

less for a threshold that decreases with scale. For the same

reason, the percentage of correct negatives decreases

monotonically for both IMERG and TMPA. The per-

centage of misses (false negatives) in IMERG increases

with scale but converges to between 8% and 9% at 2.58.
The increase itself may be a consequence of the lower

threshold at coarser scales, but the fact that the percent-

age of misses approaches a common value may be an

indication of the merit of Eq. (1). On the other hand,

for TMPA, whether the percentage of misses increases

with spatial scale depends on the temporal scale, and

vice versa. For example, the percentage of misses at

FIG. 2. Scatter diagrams between IMERG and the reference at different scales: (a) 0.18 3 0.18 grid box at 0.5 h,

(b) 0.18 3 0.18 grid box at 24 h, (c) 2.58 3 2.58 grid box at 0.5 h, and (d) 2.58 3 2.58 grid box at 24 h.
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3h increases with spatial scale while that at 24h decreases

with spatial scale. Interestingly, IMERG at 24h also

exhibits a similar behavior at coarser spatial scales, though

with a more muted decline. Finally, for false alarms (false

positives), the percentage in IMERG increases with scale,

though remaining below 8% over the range of scales

considered. Likewise, the percentage of false alarms for

TMPA increases with scale, though with larger magni-

tudes and at a faster rate. The percentage of false alarms is

higher in the cold season than in the warm season

(not shown).

From the rain occurrences, we can calculate the

probability of detection, false alarm ratio, bias in de-

tection, and Heidke skill score as a function of scale

(Fig. 6). The probabilities of detection for both IMERG

and TMPA rise monotonically with scale. This means

that both datasets are better at identifying rain occur-

rences at coarser scales. Between IMERG and TMPA,

the former is better at finer scales, but the probability of

detection for TMPA increases more rapidly with spatial

scale and outperforms IMERG after about 1.08. At 24 h

and 2.58, the probability of detection is 0.87 for IMERG

and 0.90 for TMPA. The probability of detection re-

mains above 0.5 at all scales.

The false alarm ratios for IMERG decline rapidly

with scale, but the improvement diminishes at coarser

scales (Fig. 6). This means that, of all the occurrences

that the estimates classify as raining, the fraction that are

false positives decreases as IMERG estimates are av-

eraged over larger areas and longer periods. For TMPA,

the false alarm ratios remain roughly constant with

spatial scales, but are lower at longer periods. This be-

havior of constant performance with spatial scale is due

to the decreasing thresholds; when we use a constant

threshold of 0.2mmh21, the false alarm ratios for

TMPA decrease with spatial scale just like in IMERG

(supplemental material). Regardless of the threshold or

scale, IMERG has consistently lower false alarm ratios

than TMPA. Taking together the fact that TMPA has

higher probability of detection but also higher false

alarm ratios than IMERG, it suggests the possibility that

TMPA identifies more rain events than IMERG.

The bias in detection of IMERG remains below one for

the range of scales considered here (Fig. 6). This means

that IMERG is underestimating the number of rain oc-

currences, though there is a gradual increase toward one

with increasing grid box size. For TMPA, the bias in de-

tection does not differ between different temporal scales,

but it increases sharply with the size of the box, over-

shooting the ideal value of one at about 1.08. Therefore,
on the number of rain occurrences, TMPA underesti-

mates in grid boxes smaller than 1.08 but overestimates in

grid boxes larger than 1.08. The behavior of the bias in

detection in both IMERG and TMPA reflects the

asymmetry in how the percentages of misses and false

alarms change (Fig. 5). Since the bias in detection has

false alarms in the numerator and misses in the de-

nominator (see the appendix), the greater increase in

misses than in false alarms means that bias in detection

will increase. Using a constant threshold of 0.2mmh21,

the bias in detection of both IMERG and TMPA are

roughly constant with scale, with TMPA being closer to

one than IMERG (supplemental material).

Finally, theHeidke skill scores for IMERGand TMPA

are well above zero for all scales (Fig. 6), with IMERG

consistently outperforming TMPA. This means that both

datasets are better at identifying rain occurrences than

FIG. 4. Thresholds for raining events as a function of scale. Solid

lines are for IMERG comparisons while dashed lines are for

TMPA comparisons.

FIG. 3. Fraction of occurrences for which the reference is at least

0.2mmh21. These fractions are obtained by sampling different

spatial and temporal scales a hundred times.
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random chance. For IMERG, the scores generally in-

crease with spatial and temporal scale, though reaching

an asymptotic value of about 0.70. However, for TMPA,

the Heidke skill score either remains constant or declines

with scale, though this is primarily due to the decreasing

threshold: using a constant threshold of 0.2mmh21 re-

sults in an improvement in scale similar to IMERG

(supplemental material).

In summary, Figs. 5 and 6 evaluate the performance of

IMERG and TMPA in identifying rain occurrences. They

showed that IMERG is in general better at identifying rain

occurrences at larger spatial scale and longer temporal

scale, though this improvement is not always monotonic.

TMPA, on the other hand, provides mixed results with

increasing scale. Between IMERGandTMPA, the former

is generally better, primarily because of the lower per-

centage of false alarms.However, these results are strongly

affected by the thresholds (Fig. 4), as alternative figures

for a constant threshold of 0.2mmh21 have shown (sup-

plemental material). Therefore, even though we see that

the aggregation of rainfall estimates over longer periods

and larger areas improves the performance, results on rain

occurrences are sensitive to the chosen threshold. Because

of this, we also provide, in the supplemental material, the

data computed in this section over a range of thresholds

(i.e., instead of fixing the threshold, we have three de-

pendence variables on top of spatial and temporal scale).

5. Evaluation of rain rates

The previous section evaluated the ability of IMERG

andTMPA to identify rain occurrences. In this section, we

select the subset of hits, that is, cases in which both the

satellite estimate and the ground reference are equal or

above the thresholds, and further investigate howwell the

satellite-retrieved rain rates match those from ground

measurements. We begin by examining the correlation

coefficient between IMERG/TMPA and the reference

(Fig. 7). On this measure, both IMERG and TMPA

show a clearly increasing correlation with increasing scale

though with diminishing returns at coarser scales. Nota-

bly, IMERG has significantly higher correlations than

TMPA at the same scale. For example, at 3h and 0.58,
IMERG has a correlation of 0.68 whereas TMPA has a

correlation of only 0.56. In fact, even the 1-h IMERG

correlations are better than the 3-h TMPA correlations.

FIG. 5. Hits, misses, false alarms, and correct rejections in IMERG (solid lines) and in TMPA (dashed lines) as

a function of scale.
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A similar improvement in the rain rates as a function

of scale is also present in the three errors calculated

(Fig. 8). All three errors generally decrease at coarser

scales. For normalized mean error, with the exception of

IMERG at 0.5 h, the errors decline with increasing

spatial scale but rapidly level off at about zero after 1.08.
This implies that some spatial aggregation of IMERG

andTMPAwill removemost of the systematic error. For

IMERG at 0.5 h, the normalized mean error becomes

negative in grid boxes larger than 0.38, but this un-

derestimation is largely due to the decreasing thresholds

with scale, as negative normalized mean errors are not

present when a constant threshold is used (supplemental

material). Regardless, it should be noted that the mag-

nitudes of normalized mean errors are small, being

mostly below60.1 as compared to mostly above10.5 in

the normalized mean absolute error. This lower value in

the normalized mean error is expected because of the

cancellation of positive and negative errors in a dataset

that have been gauge adjusted for systematic error.

Figure 8 also shows that averaging over larger spatial

scales further reduces the systematic error in general.

Both normalized mean absolute error and normalized

RMSE show comparable behavior. Both errors have

higher magnitudes than normalized mean error. Since

they are more strongly influenced by random error, the

reduction of the two errors with a greater degree of

averaging is not surprising. One puzzling observation in

Fig. 8 is how the two errors for 0.5 h decline with scale

FIG. 6. Probability of detection, false alarm ratio, bias in detection, and Heidke skill score of IMERG (solid lines)

and of TMPA (dashed lines) as a function of scale.

FIG. 7. Correlations of the hits between IMERG and the refer-

ence (solid lines) and TMPA and the reference (dashed lines) as

a function of scale.
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faster than for 1 and 3h, such that the 0.5-h estimates

actually have lower errors than the 1- and 3-h estimates;

the reason for this is unclear. One salient distinction be-

tween the two errors is that IMERG is better thanTMPA

in normalized mean absolute error whereas the reverse is

true for normalized RMSE. Since normalized RMSE is

affected by outliers to a greater degree, this suggests that

IMERG has more outliers and/or the outliers have larger

magnitudes. One plausible explanation for this is the fact

that IMERGuses a prelaunchGPMdatabase (version 3);

it is likely that the transition to a full GPM database will

improve the accuracy of IMERG.

One drawback of correlations and the errors

employed thus far is the assumption of additive errors

and Gaussian distribution that underpin their formu-

lation. As rain rates are not normally distributed, such

assumptions may not adequately represent the statis-

tics of rainfall, resulting in problems such as a changing

variance with rain rate and the failure to properly dis-

tinguish between systematic and random errors (Tian

et al. 2013, 2016). As such, here we adopt the multi-

plicative error model, a framework that has greater

validity for rainfall. This approach fits the estimate and

the reference in a power-law relationship, with two

parameters a and b expressing the systematic error and

the parameter s representing the bias-adjusted random

error (see the appendix for more details).

The three parameters of the multiplicative error

model have different responses to increasing spatial

and temporal scales (Fig. 9). At the finest scales, a is

positive but rapidly becomes negative with just a slight

increase in scale, both spatially and temporally. While

there is some improvement at the coarsest scale,

a remains negative throughout. On the other hand,

b shows a more expected response consistent with the

normalized mean error: a gradual increase with spatial

and temporal scale toward the perfect value of 1. In

fact, IMERG has a b of one at 24 h and 2.58. To in-

terpret the combined behavior of a and b, we must bear

in mind that a represents a multiplicative offset while

b represents the dynamic range (see Fig. A1). In this

light, what our results suggest is that, with upscale av-

eraging, IMERG and TMPA are better able to capture

the actual range of the rain rates, but this comes at a

cost of a bias toward lower values on the whole.

As for the bias-adjusted random error, s clearly de-

creases with longer temporal scale as expected, but its

behavior with spatial scale is inconsistent with what we

have observed in normalized mean absolute error and

RMSE. Instead of a monotonic decline, s actually rises

sharply until about 0.58 before falling very gradually.

This bizarre behavior in s is apparently due to how our

thresholds are chosen in Eq. (1). Indeed, when we use a

fixed threshold of 0.2mmh21, s decreases with coarser

scales similar to normalized RMSE (supplemental

material).

In summary, Figs. 7–9 evaluate the performance of

IMERG and TMPA in identifying rain rates of raining

events. They showed that both satellite estimates gen-

erally have improved performance at larger spatial

scale and longer temporal scale, both for systematic

and random errors. The decomposition using the more

relevant multiplicative error model, however, suggests

that the improvement is more subtle: upscaling im-

proves the range of rain rates in the estimates as com-

pared to the reference, but it also adds an overall bias

toward lower values. In general, IMERG is better than

TMPA. The impact of our chosen thresholds is lower

for rain rates than for rain occurrences, with its effect

only evident for s. Just as with the quantities calcu-

lated in section 4, the supplemental material contains

data for the quantities in this section over a range of

thresholds.

6. Conclusions

In this study, we evaluated IMERG, the gridded sat-

ellite rainfall product fromGPM, against a ground-based

FIG. 8. Normalized mean errors, normalized mean absolute er-

rors, and normalizedRMSEs of the hits in IMERG (solid lines) and

in TMPA (dashed lines) as a function of scale.
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reference dataset derived from MRMS as a function of

spatial and temporal scale, using TMPA as a benchmark.

The motivation behind this study is to acquaint users of

IMERGwith its performance at a scale that is relevant to

their purpose. This evaluation is performed over a region

where the reference is reliable because of dense radar

coverage and general absence of significant orography.

We examined IMERG based on two aspects: (i) whether

it can identify rain occurrences above a specified thresh-

old and (ii) whether it can capture the correct rain rates

when it correctly identifies rain occurrences.

In general, both IMERG and TMPA improve when

scaled up to larger areas and longer time periods. In

terms of identifying rain occurrences, there is an in-

crease in misses and false alarms at coarser scales

because of our threshold definition, but the four skill

scores demonstrate that IMERG is on average better

able to identify rain occurrences at coarser scales than

TMPA. However, these results on rain occurrences

are sensitive to the chosen rain/no-rain threshold. In

terms of the rain rates, there are consistent improve-

ments in correlations and both systematic error and

random error. This reduction in random error with

scale is also reported in similar studies (e.g., Roca et al.

2010; Habib et al. 2012). However, results from

multiplicative error model suggest that these im-

provements may have subtle compensating changes.

Between the two products, IMERG is slightly better

than TMPA at identifying rain occurrences and esti-

mating rain rates. This is consistent with early studies

on IMERG, finding that it has generally comparable

or better performance than TMPA (Guo et al. 2016;

Tang et al. 2016a,b).

Our results provide a reference for IMERG users on

its performance specific to their purpose. For example,

in an evaluation of daily precipitation in a climate model

with resolution of 1.08, our results show that IMERG

can correctly identify whether it is raining or not

(at a threshold of 0.004mmh21) 85% of the time with a

Heidke skill score of 0.68, and the rain rates have a

normalizedRMSE of 0.9. Alternatively, if IMERGwere

to be used for hydrological modeling over a basin of area

equivalent to 2.58 3 2.58 at hourly resolution, it will miss

8.5% of the rain occurrences ($0.008mmh21), falsely

identify a positive 5.5% of the time, and have a corre-

lation of 0.78 on its rain rates.

While the results in this study are restricted to land

and over a limited range of latitudes, the relative

performance between different scales should be ap-

plicable to all regions. Furthermore, the values in this

study may be ‘‘transferred’’ to other regions according

to our understanding of how satellite retrievals of rain

rates perform over different regions. For example, for

regions that are similar to our area of study, that is,

land surfaces in the low to midlatitude with some

vegetation cover and no significant orography, our

results should be directly applicable. Over oceans, it is

likely that the performance of IMERG will be better

because of better microwave retrieval over ocean. On

the other hand, we would expect IMERG to perform

poorer over mountainous areas, so the results here

may indicate a likely upper bound. In a similar way,

since we do not expect the Early and Late Runs of

IMERG to be better than the Final Runs, the results

here set an upper limit for the performance of these

estimates. As such, with the knowledge of the relative

performance of microwave retrievals between the re-

gion of interest and the region considered here, the

results herein will be useful for IMERG users in better

understanding the performance of the dataset.
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APPENDIX

Definition of Metrics, Errors, and the Multiplicative
Error Model

We evaluate the satellite estimate against the ground

reference based on its ability to identify (i) rain occur-

rences and (ii) rain rates of the hits. To evaluate rain

occurrences, we count the number of hits (both estimate

and reference are raining), misses (estimate is below

threshold while reference passes the threshold), false

alarms (estimate passes the threshold when reference is

below threshold), and correct negatives (both estimate

and reference are below threshold). We denote these as

H,M, F, andC, respectively.We remind readers that our

threshold varies with scale (Fig. 4). Then, we can cal-

culate the probability of detection, false alarm ratio, and

bias in detection, defined as

probability of detection5
H

H1M
, (A1)

false alarm ratio5
F

H1F
, (A2)

bias in detection5
H1F

H1M
, and (A3)

Heidke skill score5
H1C2H

e

N2H
e

, (A4)

where

H
e
5 number of correct rain occurrences by chance

5
1

N
[(H1M)(H1F)1 (C1M)(C1F)]

(A5)

and N is the sample size (Wilks 2011). It may help to

recall that H1M is the number of rain events ac-

cording to the reference while H1F is the number of

rain events according to the estimate. Probability of

detection is also sometimes called hit rate; bias in

detection is also known as bias ratio and should not be

confused with rain-rate bias.

The perfect value for probability of detection, bias in

detection, and Heidke skill score is one; the perfect

FIG. A1. The effects of (left) a with b 5 1 and (right) b with a 5 0 from the multiplicative error model on

a linear axes.
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value for false alarm ratio is zero. We compute these

scores for each ensemble member and then average

across the ensemble to obtain the mean scores as a

function of scale.

For the hits, we can further evaluate their rain rates

using normalizedmean error, normalizedmean absolute

error, and RMSE, defined as

normalized mean error5

1

n
�
i

(y
i
2 x

i
)

x
, (A6)

normalized mean absolute error5

1

n
�
i

jy
i
2 x

i
j

x
, (A7)

and

root-mean-square error5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�
i

(y
i
2 x

i
)2

s

x
, (A8)

where xi and yi are the reference and estimate, re-

spectively; x5 1/n�ixi is the mean of the reference; and

n is the number of hits. Perfect values are zero. Note that

normalized mean error is sometimes also defined as

‘‘bias,’’ but we avoid this terminology because of po-

tential confusion with bias in detection.

We can also examine the rain rates of the hits using the

multiplicative error model (Tian et al. 2013), which ex-

presses the estimate and the reference through the

relationship

y
i
5 eaxbi e

«i , (A9)

where a and b characterize the systematic errors and «i
represents the bias-corrected random error with a normal

distribution of mean 0 and standard deviation s. With a

logarithmic transformation, this relationship becomes

log(y
i
)5a1b log(x

i
)1 «

i
, (A10)

which can be fitted using ordinary least squares. The

perfect value of a is zero, the perfect value of b is one,

and the perfect value of s is zero.

One way to visualize this is via Fig. A1, which shows the

effects ofa andb on linear axes for x and y. Thea quantifies

the ‘‘tilt’’ from the one-to-one line: with a perfect b, the

deterministic part of the model becomes y5 eax, with

a determining the gradient of the relationship. The

b characterizes the departure from linearity: with a perfect

a, the deterministic part of the model becomes y5 xb, with

b being the exponent in the power-law relationship. With a

logarithmic transformation, the model becomes a straight

line in log–log axes, with b being the slope and a being the

intercept at x5 1. The s, on the other hand, quantifies the

stochastic component in themodel, representing the spread

of the points from the best fit curve of y5 eaxb. As such, it

can be considered as the spread of the points after removing

any systematic errors.
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